A brighter, lighter and healthier world
Home » Publications » Amplitude and phase effects on the synchronization of delay-coupled oscillators

Amplitude and phase effects on the synchronization of delay-coupled oscillators

Publication date 2010
B-Phot Authors
DOI 10.1063/1.3518363
O. D’Huys, R. Vicente, J. Danckaert, and I. Fischer, “Amplitude and phase effects on the synchronization of delay-coupled oscillators,” CHAOS, vol. 20, no. 043127, 2010.
Abstract We consider the behavior of Stuart-Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding self-feedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behavior. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518363]
B-PHOT cooperates with EYESTvzw for STEM-projects in Photonics

Click here for more information...


Hugo Thienpont
Prof. Dr. Ir.
Hugo Thienpont
Managing Director
Nadia Cornand

Nadia Cornand
+32 2 791 68 52

How to reach B-Phot?

VUB - Campus Etterbeek
Pleinlaan 2
1050 Elsene
Building F - 9th floor

More info