A brighter, lighter and healthier world
Home » Publications » Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription.

Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription.

Publication date 2011
B-Phot Authors Tigran Baghdasaryan, Thomas Geernaert, Francis Berghmans, Hugo Thienpont
Citation
T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription.,” Opt. Express, vol. 19, no. 8, pp. 7705–7716, 2011.
Abstract We have studied transverse propagation of femtosecond pulse duration laser light through the microstructure of hexagonal lattice photonic crystal fibers. Our results provide insight in the role of the microstructure on the amount of optical power that reaches the core of the PCF, which is of particular importance for grating inscription applications. We developed a dedicated approach based on commercial FDTD software and defined a figure of merit, the transverse coupling efficiency, to evaluate the coupling process. We analyzed the propagation of femtosecond laser pulses to the core of a wide range of PCFs and studied the influence of the PCF orientation angle, the air hole pitch and air hole radius on the energy reaching the core. We have found that the transverse coupling efficiency can benefit from a dedicated design of the microstructured cladding and an accurate fiber orientation. We designed a dedicated PCF microstructure that enhances transverse coupling to the core at a wavelength of 800 nm.
B-PHOT cooperates with EYESTvzw for STEM-projects in Photonics
STEM

Click here for more information...

Contact

Hugo Thienpont
Prof. Dr. Ir.
Hugo Thienpont
Managing Director
Nadia Cornand

Nadia Cornand
Secretary
ncornand@b-phot.org
+32 2 791 68 52

How to reach B-Phot?

VUB - Campus Etterbeek
Pleinlaan 2
1050 Elsene
Building F - 9th floor

More info