A brighter, lighter and healthier world
Home » Publications » Realistic opto-mechanical simulation and tolerancing of an automotive optical transmitter coupling system

Realistic opto-mechanical simulation and tolerancing of an automotive optical transmitter coupling system

Publication date 2010
B-Phot Authors Michael Vervaeke, Heidi Ottevaere, Hugo Thienpont
DOI 10.1117/12.853643
Citation
M. Vervaeke et al., “Realistic opto-mechanical simulation and tolerancing of an automotive optical transmitter coupling system,” in Micro-Optics 2010, 2010, vol. 7716.
Abstract The advent of Plastic Optical Fibre (POF) opened perspectives for numerous applications in the field of datacommunications. POF is increasingly popular in the automotive industry as a robust, lightweight, electromagnetic interference free, easy and cheap to install alternative to electrical wiring for high-speed entertainment, navigation and data acquisition systems in cars. The main challenge for the introduction of datacommunication systems based on POF is imposed by the working conditions of automotive applications: systems should remain fully functional in a temperature range from -40 degrees C to + 115 degrees C. Furthermore, standardisation and mechanical design considerations put a number of other boundary conditions. We designed a misalignment-tolerant optical coupling system according to the Media Oriented Systems Transport standard (MOST) to convey the divergent beam from a Resonant Cavity Light Emitting Diode (RCLED) into a Step-Index (SI) multimode POF mounted in a detachable ferrule. In this contribution we describe the methodology to synthesize the dimensions and tolerances on the optical components in the coupling system. A Monte Carlo optimisation algorithm on the full three-dimensional (3D) description of the complete RCLED package and detachable POF ferrule was used to allow a realistic modelling of all misalignments that could occur in the production chain. We select the best suited system according to manufacturing and assembly capabilities as well as its suitability for automotive applications.
B-PHOT cooperates with EYESTvzw for STEM-projects in Photonics
STEM

Click here for more information...

Contact

Hugo Thienpont
Prof. Dr. Ir.
Hugo Thienpont
Managing Director
Nadia Cornand

Nadia Cornand
Secretary
ncornand@b-phot.org
+32 2 791 68 52

How to reach B-Phot?

VUB - Campus Etterbeek
Pleinlaan 2
1050 Elsene
Building F - 9th floor

More info