A brighter, lighter and healthier world
Home » Publications » Optical spectroscopy as a rapid and low-cost tool for the first-line analysis of glass artefacts: a step-by-step plan for Roman green glass

Optical spectroscopy as a rapid and low-cost tool for the first-line analysis of glass artefacts: a step-by-step plan for Roman green glass

Publication date 2011
B-Phot Authors Wendy Meulebroeck, Hilde Wouters, Hugo Thienpont
Citation
W. Meulebroeck et al., “Optical spectroscopy as a rapid and low-cost tool for the first-line analysis of glass artefacts: a step-by-step plan for Roman green glass,” J. Archeol. Sci., vol. 38, no. 9, pp. 2387–2398, 2011.
Abstract Archaeometric research on glass artefacts is continuously evolving and is converging towards a multidisciplinary research domain where different types of techniques are applied depending on the questions asked and the circumstances involved. The technique described in this work is optical spectroscopy. The benefit of this technique being the possibility of building up a knowledge database for a large amount of material in a relatively short period of time and with a relatively limited budget. This is of particular interest for the investigation of extensive and/or unexplored glass collections where a first-line analysis of artefacts could facilitate the selection of material needing further and more detailed examination. This publication explores the extent to which optical spectroscopy can be used for a first-line analysis of green coloured glass artefacts from the Roman period. It is shown that the colour coordinates calculated from the measured transmission spectrum could reveal information about the fragment under study. In particular it is shown that 1) based on the position of the calculated colour values on the colour diagram (CIE1931) one could easily know whether the artefact was coloured using only iron or if copper oxides were also present. In the case of the artefact owing its colour solely to the presence of iron, the distance between the measured colour values and the colour diagram’s white point can roughly indicate the iron concentration of the sample; 2) artefacts that were fabricated under similar furnace conditions can also be identified on the colour diagram; 3) samples with identical compositions and fabrication conditions but with different sample thickness, gave rise to a variation in the colour coordinates, thus allowing optical spectroscopy to help identify fragments which might belong to the same object.
B-PHOT cooperates with EYESTvzw for STEM-projects in Photonics
STEM

Click here for more information...

Contact

Hugo Thienpont
Prof. Dr. Ir.
Hugo Thienpont
Managing Director
Nadia Cornand

Nadia Cornand
Secretary
ncornand@b-phot.org
+32 2 791 68 52

How to reach B-Phot?

VUB - Campus Etterbeek
Pleinlaan 2
1050 Elsene
Building F - 9th floor

More info