A brighter, lighter and healthier world
Home » Publications » Sensing applications of photonic crystal fibres

Sensing applications of photonic crystal fibres

Publication date 2007
B-Phot Authors Jurgen Van Erps, Johan Vlekken, Francis Berghmans, Hugo Thienpont
DOI 10.1117/12.739311
T. Nasilowski et al., “Sensing applications of photonic crystal fibres,” in Proc. SPIE, Lightguides and Their Applications III, 2007, vol. 6608, p. 660802.
Abstract Fast, frequent, accurate and reliable measurements of physical factors such as temperature, stress or strain play a key role when it comes to ensuring the smooth operation of processes in many domestic, commercial and industrial constructions or devices. For example, most fabrication devices and production process rely on temperature and stress measurements to operate; and most large buildings depend on a series of temperature sensors to control the heating or cooling to maintain the temperature. Photonic crystal fibres (PCF), constitute a class of optical fibres, which has a large potential for number of novel applications either in the telecom or in the sensing domain. Analysis of sensing characteristics of different photonic crystal fibre structures, including effective index and mode field distribution, photonic bandgap, chromatic dispersion, phase and group modal birefringence, confinement and bending losses, sensitivity to temperature, hydrostatic pressure, and other physical parameters are revealed. The benefits of PCF allow fabrication of different types of specialty microstructured fibres such as endlessly single mode, double clad, germanium or rare earth doped, highly birefringent, and many other microstructured fibres as sensor components. The developed characterization techniques of specialty microstructured fibres are reviewed as well. Finally, the new microstructured fibres and fibre component for sensing applications which were designed, fabricated and characterized will be presented. One of the demonstrated components is the effective Bragg grating written in highly birefringent and single mode photonic crystal fibre.
Looking for photonics STEM activities? Visit our new site


Hugo Thienpont
Prof. Dr. Ir.
Hugo Thienpont
Managing Director
Nadia Cornand

Nadia Cornand
+32 2 791 68 52

How to reach B-Phot?

VUB - Campus Etterbeek
Pleinlaan 2
1050 Elsene
Building F - 9th floor

More info