A brighter, lighter and healthier world
Home » Publications » Prototyping micro-optical components with integrated out-of-plane coupling structures using deep lithography with protons

Prototyping micro-optical components with integrated out-of-plane coupling structures using deep lithography with protons

Publication date 2006
B-Phot Authors Jurgen Van Erps, Hugo Thienpont
Citation
J. Van Erps, L. Bogaert, B. Volckaerts, C. Debaes, and H. Thienpont, “Prototyping micro-optical components with integrated out-of-plane coupling structures using deep lithography with protons,” in Proc. SPIE Micro-optics, VCSELs and photonic interconnects II: Fabrication, Packaging and Integration, 2006, vol. 6185, p. 618504.
Abstract We present Deep Lithography with Protons (DLP) as a rapid prototyping technology to fabricate waveguide-based micro-optical components with monolithically integrated 45° micro-mirrors acting as out-of-plane couplers, splitting the optical signal in 3 separated paths. For the first time, two different proton beam sizes are used during one irradiation and a 20μm collimating aperture is chosen to accurately define the out-of-plane coupling structures. We fully optimized the DLP process for this 20μm proton beam and we measured the surface roughness (Rq=27.5nm) and the flatness (Rt=3.17μm) of the realized components. Finally, we experimentally measured the optical transmission efficiency of the micro-optical splitter component. The results are in excellent agreement with non-sequential ray-tracing simulations performed for the design. Above that, we present a pluggable out-of-plane coupler incorporating a single micro-mirror for the 90° coupling of light to or from polymer multimode waveguides integrated on a printed circuit board (PCB). This millimeter-sized mass-reproducible component can then be readily inserted into laser ablated cavities. Nonsequential ray-tracing simulations are performed to predict the optical performance of the component, showing coupling efficiencies up to 78%. These results are then experimentally verified using piezo-motorized positioning equipment with submicron accuracy in a multimode fiber-to-fiber coupling scheme, showing coupling efficiencies up to 56%. The fabricated coupling components are suitable for low-cost mass production since our micro-optical prototyping technology is compatible with standard replication techniques, such as hot embossing and injection molding, has been shown before.
B-PHOT cooperates with EYESTvzw for STEM-projects in Photonics
STEM

Click here for more information...

Contact

Hugo Thienpont
Prof. Dr. Ir.
Hugo Thienpont
Managing Director
Nadia Cornand

Nadia Cornand
Secretary
ncornand@b-phot.org
+32 2 791 68 52

How to reach B-Phot?

VUB - Campus Etterbeek
Pleinlaan 2
1050 Elsene
Building F - 9th floor

More info